NVIDIA Quadro K6000 SDI NVIDIA Quadro K6000 SDI
AMD Radeon RX 6600 AMD Radeon RX 6600
VS

Porównanie NVIDIA Quadro K6000 SDI vs AMD Radeon RX 6600

NVIDIA Quadro K6000 SDI

NVIDIA Quadro K6000 SDI

Ocena: 0 Zwrotnica
AMD Radeon RX 6600

WINNER
AMD Radeon RX 6600

Ocena: 42 Zwrotnica
Stopień
NVIDIA Quadro K6000 SDI
AMD Radeon RX 6600
Wydajność
5
7
Pamięć
2
1
Informacje ogólne
7
8
Funkcje
8
7
Porty
0
7

Najlepsze specyfikacje i funkcje

Podstawowa szybkość zegara GPU

NVIDIA Quadro K6000 SDI: 902 MHz AMD Radeon RX 6600: 1626 MHz

Baran

NVIDIA Quadro K6000 SDI: 12 GB AMD Radeon RX 6600: 8 GB

Przepustowość pamięci

NVIDIA Quadro K6000 SDI: 288.4 GB/s AMD Radeon RX 6600: 224 GB/s

Szybkość pamięci GPU

NVIDIA Quadro K6000 SDI: 1502 MHz AMD Radeon RX 6600: 1750 MHz

FLOPS

NVIDIA Quadro K6000 SDI: 5.29 TFLOPS AMD Radeon RX 6600: 9.23 TFLOPS

Opis

Karta wideo NVIDIA Quadro K6000 SDI jest oparta na architekturze Kepler. AMD Radeon RX 6600 w architekturze RDNA 2.0. Pierwszy ma 7080 milionów tranzystorów. Drugi to 11060 milionów.

Podstawowa szybkość zegara pierwszej karty graficznej wynosi 902 MHz w porównaniu z 1626 MHz dla drugiej.

Przejdźmy do pamięci. NVIDIA Quadro K6000 SDI ma 12 GB. AMD Radeon RX 6600 ma zainstalowane 12 GB. Przepustowość pierwszej karty graficznej wynosi 288.4 Gb/s w porównaniu z 224 Gb/s drugiej.

FLOPS NVIDIA Quadro K6000 SDI to 5.29. W AMD Radeon RX 6600 9.23.

Przechodzi do testów w testach porównawczych. W teście Passmark NVIDIA Quadro K6000 SDI zdobył Brak danych punktów. A oto druga karta 12709 punktów. W 3DMarku pierwszy model zdobył Brak danych punktów. Drugie 21479 punktów.

Pod względem interfejsów. Pierwsza karta wideo jest podłączona za pomocą Brak danych. Drugi to Brak danych. Karta wideo NVIDIA Quadro K6000 SDI ma Directx w wersji 11. Karta wideo AMD Radeon RX 6600 – wersja Directx – 12.2.

Dlaczego AMD Radeon RX 6600 jest lepszy niż NVIDIA Quadro K6000 SDI

  • Baran 12 GB против 8 GB, więcej na temat 50%
  • Przepustowość pamięci 288.4 GB/s против 224 GB/s, więcej na temat 29%

Porównanie NVIDIA Quadro K6000 SDI i AMD Radeon RX 6600: Highlights

NVIDIA Quadro K6000 SDI
NVIDIA Quadro K6000 SDI
AMD Radeon RX 6600
AMD Radeon RX 6600
Wydajność
Podstawowa szybkość zegara GPU
Procesor graficzny (GPU) ma wysoką częstotliwość taktowania.
902 MHz
max 2457
Średnia: 1124.9 MHz
1626 MHz
max 2457
Średnia: 1124.9 MHz
Szybkość pamięci GPU
Jest to ważny aspekt przy obliczaniu przepustowości pamięci.
1502 MHz
max 16000
Średnia: 1468 MHz
1750 MHz
max 16000
Średnia: 1468 MHz
FLOPS
Pomiar mocy obliczeniowej procesora nazywa się FLOPS.
5.29 TFLOPS
max 1142.32
Średnia: 53 TFLOPS
9.23 TFLOPS
max 1142.32
Średnia: 53 TFLOPS
Baran
Pamięć RAM w kartach graficznych (znana również jako pamięć wideo lub VRAM) to specjalny rodzaj pamięci używany przez kartę graficzną do przechowywania danych graficznych. Służy jako tymczasowy bufor dla tekstur, shaderów, geometrii i innych zasobów graficznych potrzebnych do wyświetlania obrazów na ekranie. Większa ilość pamięci RAM pozwala karcie graficznej pracować z większą ilością danych i obsługiwać bardziej złożone sceny graficzne o wysokiej rozdzielczości i szczegółowości. Pokaż w całości
12 GB
max 128
Średnia: 4.6 GB
8 GB
max 128
Średnia: 4.6 GB
Liczba wątków
Im więcej wątków ma karta wideo, tym więcej mocy obliczeniowej może zapewnić.
2880
max 18432
Średnia: 1326.3
1792
max 18432
Średnia: 1326.3
Liczba linii PCIe
Liczba pasów PCIe w kartach graficznych określa szybkość i przepustowość transferu danych między kartą graficzną a innymi komponentami komputera za pośrednictwem interfejsu PCIe. Im więcej linii PCIe ma karta graficzna, tym większa przepustowość i możliwość komunikacji z innymi komponentami komputera. Pokaż w całości
16
max 16
Średnia:
8
max 16
Średnia:
Szybkość renderowania pikseli
Im wyższa prędkość renderowania pikseli, tym płynniejsze i bardziej realistyczne będzie wyświetlanie grafiki i ruchu obiektów na ekranie.
54 GTexel/s    
max 563
Średnia: 94.3 GTexel/s    
159 GTexel/s    
max 563
Średnia: 94.3 GTexel/s    
TMU
Odpowiada za teksturowanie obiektów w grafice 3D. TMU zapewnia tekstury powierzchniom obiektów, co nadaje im realistyczny wygląd i szczegółowość. Liczba jednostek TMU w karcie graficznej określa jej zdolność do przetwarzania tekstur. Im więcej TMU, tym więcej tekstur można przetwarzać jednocześnie, co przyczynia się do lepszego teksturowania obiektów i zwiększa realizm grafiki. Pokaż w całości
240
max 880
Średnia: 140.1
112
max 880
Średnia: 140.1
RPO
Odpowiada za ostateczną obróbkę pikseli i ich wyświetlanie na ekranie. ROP wykonują różne operacje na pikselach, takie jak mieszanie kolorów, stosowanie przezroczystości i zapisywanie do bufora ramki. Liczba ROP w karcie graficznej wpływa na jej zdolność do przetwarzania i wyświetlania grafiki. Im więcej ROP, tym więcej pikseli i fragmentów obrazu można jednocześnie przetwarzać i wyświetlać na ekranie. Większa liczba ROP generalnie skutkuje szybszym i wydajniejszym renderowaniem grafiki oraz lepszą wydajnością w grach i aplikacjach graficznych. Pokaż w całości
48
max 256
Średnia: 56.8
64
max 256
Średnia: 56.8
Liczba bloków cieniowania
Liczba jednostek cieniujących w kartach graficznych odnosi się do liczby równoległych procesorów, które wykonują operacje obliczeniowe w GPU. Im więcej jednostek cieniujących na karcie graficznej, tym więcej zasobów obliczeniowych jest dostępnych do przetwarzania zadań graficznych. Pokaż w całości
2880
max 17408
Średnia:
1792
max 17408
Średnia:
Rozmiar pamięci podręcznej L2
Służy do tymczasowego przechowywania danych i instrukcji używanych przez kartę graficzną podczas wykonywania obliczeń graficznych. Większa pamięć podręczna L2 pozwala karcie graficznej przechowywać więcej danych i instrukcji, co pomaga przyspieszyć przetwarzanie operacji graficznych. Pokaż w całości
1536
2000
nazwa architektury
Kepler
RDNA 2.0
Nazwa GPU
GK110
Navi 23
Pamięć
Przepustowość pamięci
Jest to szybkość, z jaką urządzenie przechowuje lub odczytuje informacje.
288.4 GB/s
max 2656
Średnia: 257.8 GB/s
224 GB/s
max 2656
Średnia: 257.8 GB/s
Baran
Pamięć RAM w kartach graficznych (znana również jako pamięć wideo lub VRAM) to specjalny rodzaj pamięci używany przez kartę graficzną do przechowywania danych graficznych. Służy jako tymczasowy bufor dla tekstur, shaderów, geometrii i innych zasobów graficznych potrzebnych do wyświetlania obrazów na ekranie. Większa ilość pamięci RAM pozwala karcie graficznej pracować z większą ilością danych i obsługiwać bardziej złożone sceny graficzne o wysokiej rozdzielczości i szczegółowości. Pokaż w całości
12 GB
max 128
Średnia: 4.6 GB
8 GB
max 128
Średnia: 4.6 GB
Wersje pamięci GDDR
Najnowsze wersje pamięci GDDR zapewniają wysokie prędkości przesyłania danych, co poprawia ogólną wydajność
5
max 6
Średnia: 4.9
6
max 6
Średnia: 4.9
Szerokość magistrali pamięci Memory
Szeroka magistrala pamięci oznacza, że ​​może przesłać więcej informacji w jednym cyklu. Ta właściwość wpływa na wydajność pamięci, a także ogólną wydajność karty graficznej urządzenia. Pokaż w całości
384 bit
max 8192
Średnia: 283.9 bit
128 bit
max 8192
Średnia: 283.9 bit
Informacje ogólne
Rozmiar kryształu
Fizyczne wymiary układu scalonego, na którym znajdują się tranzystory, mikroukłady i inne elementy niezbędne do działania karty graficznej. Im większy rozmiar matrycy, tym więcej miejsca zajmuje GPU na karcie graficznej. Większe rozmiary kości mogą zapewnić więcej zasobów obliczeniowych, takich jak rdzenie CUDA lub rdzenie tensorowe, co może prowadzić do zwiększenia wydajności i możliwości przetwarzania grafiki. Pokaż w całości
561
max 826
Średnia: 356.7
237
max 826
Średnia: 356.7
Długość
265
max 524
Średnia: 250.2
188
max 524
Średnia: 250.2
Pokolenie
Nowa generacja kart graficznych zwykle obejmuje ulepszoną architekturę, wyższą wydajność, bardziej efektywne wykorzystanie energii, ulepszone możliwości graficzne i nowe funkcje. Pokaż w całości
Quadro
Navi II
Producent
TSMC
TSMC
Moc zasilacza
Wybierając zasilacz do karty graficznej, należy wziąć pod uwagę wymagania dotyczące zasilania producenta karty graficznej, a także innych komponentów komputera. Pokaż w całości
550
max 1300
Średnia:
300
max 1300
Średnia:
Rok wydania
2013
max 2023
Średnia:
2021
max 2023
Średnia:
Zużycie energii (TDP)
Wymagania dotyczące rozpraszania ciepła (TDP) to maksymalna możliwa ilość energii rozpraszanej przez system chłodzenia. Im niższy TDP, tym mniej energii zostanie zużyta Pokaż w całości
239 W
Średnia: 160 W
132 W
Średnia: 160 W
Proces technologiczny
Niewielki rozmiar półprzewodników oznacza, że ​​jest to chip nowej generacji.
28 nm
Średnia: 34.7 nm
7 nm
Średnia: 34.7 nm
Liczba tranzystorów
Im wyższa ich liczba, tym większa moc procesora to wskazuje.
7080 million
max 80000
Średnia: 7150 million
11060 million
max 80000
Średnia: 7150 million
Interfejs połączenia PCIe
Zapewniona jest znaczna prędkość karty rozszerzeń używanej do łączenia komputera z urządzeniami peryferyjnymi. Zaktualizowane wersje oferują imponującą przepustowość i wysoką wydajność. Pokaż w całości
3
max 4
Średnia: 3
4
max 4
Średnia: 3
Szerokość
109 mm
max 421.7
Średnia: 192.1 mm
109 mm
max 421.7
Średnia: 192.1 mm
Zamiar
Workstation
Desktop
Cena w momencie wydania
8599 $
max 419999
Średnia: 5679.5 $
329 $
max 419999
Średnia: 5679.5 $
Funkcje
Wersja OpenGL
OpenGL zapewnia dostęp do możliwości sprzętowych karty graficznej do wyświetlania obiektów graficznych 2D i 3D. Nowe wersje OpenGL mogą obejmować obsługę nowych efektów graficznych, optymalizację wydajności, poprawki błędów i inne ulepszenia. Pokaż w całości
4.6
max 4.6
Średnia:
4.6
max 4.6
Średnia:
DirectX
Używany w wymagających grach, zapewniający ulepszoną grafikę
11
max 12.2
Średnia: 11.4
12.2
max 12.2
Średnia: 11.4
Wersja modelu shadera
Im wyższa wersja modelu shaderów w karcie graficznej, tym więcej funkcji i możliwości programowania efektów graficznych.
5.1
max 6.7
Średnia: 5.9
6.5
max 6.7
Średnia: 5.9
Wersja CUDA
Umożliwia wykorzystanie rdzeni obliczeniowych karty graficznej do wykonywania obliczeń równoległych, co może być przydatne w takich obszarach, jak badania naukowe, głębokie uczenie się, przetwarzanie obrazów i inne zadania wymagające dużej mocy obliczeniowej. Pokaż w całości
3.5
max 9
Średnia:
max 9
Średnia:
Porty
DisplayPort
Umożliwia połączenie z wyświetlaczem za pomocą DisplayPort
2
max 4
Średnia: 2.2
max 4
Średnia: 2.2
Wyjścia DVI
Umożliwia połączenie z wyświetlaczem za pomocą DVI
3
max 3
Średnia: 1.4
max 3
Średnia: 1.4

FAQ

Jak procesor NVIDIA Quadro K6000 SDI radzi sobie w testach porównawczych?

Passmark NVIDIA Quadro K6000 SDI zdobył Brak danych punktów. Druga karta wideo uzyskała 12709 punktów w teście Passmark.

Jakie FLOPY mają karty graficzne?

FLOPS NVIDIA Quadro K6000 SDI to 5.29 TFLOPS. Ale druga karta wideo ma liczbę FLOPS równych 9.23 TFLOPS.

Jak szybcy są NVIDIA Quadro K6000 SDI i AMD Radeon RX 6600?

NVIDIA Quadro K6000 SDI pracuje z częstotliwością 902 MHz. W tym przypadku maksymalna częstotliwość osiąga Brak danych MHz. Bazowa częstotliwość zegara AMD Radeon RX 6600 osiąga 1626 MHz. W trybie turbo osiąga 2491 MHz.

Jaki rodzaj pamięci mają karty graficzne?

NVIDIA Quadro K6000 SDI obsługuje GDDR5. Zainstalowano 12 GB pamięci RAM. Przepustowość sięga 288.4 GB/s. AMD Radeon RX 6600 współpracuje z GDDR6. Drugi ma zainstalowane 8 GB pamięci RAM. Jego przepustowość wynosi 288.4 GB/s.

Ile mają złączy HDMI?

NVIDIA Quadro K6000 SDI ma Brak danych wyjścia HDMI. AMD Radeon RX 6600 jest wyposażony w 1 wyjścia HDMI.

Jakie złącza zasilania są używane?

NVIDIA Quadro K6000 SDI używa Brak danych. AMD Radeon RX 6600 jest wyposażony w Brak danych wyjścia HDMI.

Na jakiej architekturze oparte są karty graficzne?

NVIDIA Quadro K6000 SDI opiera się na Kepler. AMD Radeon RX 6600 używa architektury RDNA 2.0.

Jaki procesor graficzny jest używany?

NVIDIA Quadro K6000 SDI jest wyposażony w GK110. AMD Radeon RX 6600 jest ustawiony na Navi 23.

Ile linii PCIe

Pierwsza karta graficzna ma 16 linie PCIe. A wersja PCIe to 3. AMD Radeon RX 6600 16 tory PCIe. Wersja PCIe 3.

Ile tranzystorów?

NVIDIA Quadro K6000 SDI ma 7080 milionów tranzystorów. AMD Radeon RX 6600 ma 11060 milionów tranzystorów