NVIDIA GeForce GTX 560 Ti OEM NVIDIA GeForce GTX 560 Ti OEM
NVIDIA RTX A4500 NVIDIA RTX A4500
VS

Porównanie NVIDIA GeForce GTX 560 Ti OEM vs NVIDIA RTX A4500

NVIDIA GeForce GTX 560 Ti OEM

NVIDIA GeForce GTX 560 Ti OEM

Ocena: 10 Zwrotnica
NVIDIA RTX A4500

WINNER
NVIDIA RTX A4500

Ocena: 68 Zwrotnica
Stopień
NVIDIA GeForce GTX 560 Ti OEM
NVIDIA RTX A4500
Wydajność
4
6
Pamięć
1
3
Informacje ogólne
7
8
Funkcje
6
8
Testy porównawcze
1
7
Porty
7
0

Najlepsze specyfikacje i funkcje

Wynik Passmark

NVIDIA GeForce GTX 560 Ti OEM: 3098 NVIDIA RTX A4500: 20388

Wynik testu grafiki 3DMark Fire Strike

NVIDIA GeForce GTX 560 Ti OEM: 4095 NVIDIA RTX A4500:

Podstawowa szybkość zegara GPU

NVIDIA GeForce GTX 560 Ti OEM: 820 MHz NVIDIA RTX A4500: 1050 MHz

Baran

NVIDIA GeForce GTX 560 Ti OEM: 1 GB NVIDIA RTX A4500: 20 GB

Przepustowość pamięci

NVIDIA GeForce GTX 560 Ti OEM: 128.3 GB/s NVIDIA RTX A4500: 640 GB/s

Opis

Karta wideo NVIDIA GeForce GTX 560 Ti OEM jest oparta na architekturze Fermi 2.0. NVIDIA RTX A4500 w architekturze Ampere. Pierwszy ma 1950 milionów tranzystorów. Drugi to 28300 milionów.

Podstawowa szybkość zegara pierwszej karty graficznej wynosi 820 MHz w porównaniu z 1050 MHz dla drugiej.

Przejdźmy do pamięci. NVIDIA GeForce GTX 560 Ti OEM ma 1 GB. NVIDIA RTX A4500 ma zainstalowane 1 GB. Przepustowość pierwszej karty graficznej wynosi 128.3 Gb/s w porównaniu z 640 Gb/s drugiej.

FLOPS NVIDIA GeForce GTX 560 Ti OEM to 1.3. W NVIDIA RTX A4500 24.26.

Przechodzi do testów w testach porównawczych. W teście Passmark NVIDIA GeForce GTX 560 Ti OEM zdobył 3098 punktów. A oto druga karta 20388 punktów. W 3DMarku pierwszy model zdobył 4095 punktów. Drugie Brak danych punktów.

Pod względem interfejsów. Pierwsza karta wideo jest podłączona za pomocą Brak danych. Drugi to Brak danych. Karta wideo NVIDIA GeForce GTX 560 Ti OEM ma Directx w wersji 12. Karta wideo NVIDIA RTX A4500 – wersja Directx – 12.2.

Dlaczego NVIDIA RTX A4500 jest lepszy niż NVIDIA GeForce GTX 560 Ti OEM

  • Zużycie energii (TDP) 170 W против 200 W, mniej o -15%

Porównanie NVIDIA GeForce GTX 560 Ti OEM i NVIDIA RTX A4500: Highlights

NVIDIA GeForce GTX 560 Ti OEM
NVIDIA GeForce GTX 560 Ti OEM
NVIDIA RTX A4500
NVIDIA RTX A4500
Wydajność
Podstawowa szybkość zegara GPU
Procesor graficzny (GPU) ma wysoką częstotliwość taktowania.
820 MHz
max 2457
Średnia: 1124.9 MHz
1050 MHz
max 2457
Średnia: 1124.9 MHz
Szybkość pamięci GPU
Jest to ważny aspekt przy obliczaniu przepustowości pamięci.
1002 MHz
max 16000
Średnia: 1468 MHz
2000 MHz
max 16000
Średnia: 1468 MHz
FLOPS
Pomiar mocy obliczeniowej procesora nazywa się FLOPS.
1.3 TFLOPS
max 1142.32
Średnia: 53 TFLOPS
24.26 TFLOPS
max 1142.32
Średnia: 53 TFLOPS
Baran
Pamięć RAM w kartach graficznych (znana również jako pamięć wideo lub VRAM) to specjalny rodzaj pamięci używany przez kartę graficzną do przechowywania danych graficznych. Służy jako tymczasowy bufor dla tekstur, shaderów, geometrii i innych zasobów graficznych potrzebnych do wyświetlania obrazów na ekranie. Większa ilość pamięci RAM pozwala karcie graficznej pracować z większą ilością danych i obsługiwać bardziej złożone sceny graficzne o wysokiej rozdzielczości i szczegółowości. Pokaż w całości
1 GB
max 128
Średnia: 4.6 GB
20 GB
max 128
Średnia: 4.6 GB
Liczba wątków
Im więcej wątków ma karta wideo, tym więcej mocy obliczeniowej może zapewnić.
384
max 18432
Średnia: 1326.3
7168
max 18432
Średnia: 1326.3
Liczba linii PCIe
Liczba pasów PCIe w kartach graficznych określa szybkość i przepustowość transferu danych między kartą graficzną a innymi komponentami komputera za pośrednictwem interfejsu PCIe. Im więcej linii PCIe ma karta graficzna, tym większa przepustowość i możliwość komunikacji z innymi komponentami komputera. Pokaż w całości
16
max 16
Średnia:
16
max 16
Średnia:
Rozmiar pamięci podręcznej L1
Ilość pamięci podręcznej L1 w kartach graficznych jest zwykle niewielka i mierzona w kilobajtach (KB) lub megabajtach (MB). Jest przeznaczony do tymczasowego przechowywania najbardziej aktywnych i najczęściej używanych danych i instrukcji, umożliwiając karcie graficznej szybszy dostęp do nich i zmniejszając opóźnienia w operacjach graficznych. Pokaż w całości
64
Brak danych
TMU
Odpowiada za teksturowanie obiektów w grafice 3D. TMU zapewnia tekstury powierzchniom obiektów, co nadaje im realistyczny wygląd i szczegółowość. Liczba jednostek TMU w karcie graficznej określa jej zdolność do przetwarzania tekstur. Im więcej TMU, tym więcej tekstur można przetwarzać jednocześnie, co przyczynia się do lepszego teksturowania obiektów i zwiększa realizm grafiki. Pokaż w całości
64
max 880
Średnia: 140.1
224
max 880
Średnia: 140.1
RPO
Odpowiada za ostateczną obróbkę pikseli i ich wyświetlanie na ekranie. ROP wykonują różne operacje na pikselach, takie jak mieszanie kolorów, stosowanie przezroczystości i zapisywanie do bufora ramki. Liczba ROP w karcie graficznej wpływa na jej zdolność do przetwarzania i wyświetlania grafiki. Im więcej ROP, tym więcej pikseli i fragmentów obrazu można jednocześnie przetwarzać i wyświetlać na ekranie. Większa liczba ROP generalnie skutkuje szybszym i wydajniejszym renderowaniem grafiki oraz lepszą wydajnością w grach i aplikacjach graficznych. Pokaż w całości
32
max 256
Średnia: 56.8
96
max 256
Średnia: 56.8
Rozmiar pamięci podręcznej L2
Służy do tymczasowego przechowywania danych i instrukcji używanych przez kartę graficzną podczas wykonywania obliczeń graficznych. Większa pamięć podręczna L2 pozwala karcie graficznej przechowywać więcej danych i instrukcji, co pomaga przyspieszyć przetwarzanie operacji graficznych. Pokaż w całości
512
6000
nazwa architektury
Fermi 2.0
Ampere
Nazwa GPU
GF114
GA102
Pamięć
Przepustowość pamięci
Jest to szybkość, z jaką urządzenie przechowuje lub odczytuje informacje.
128.3 GB/s
max 2656
Średnia: 257.8 GB/s
640 GB/s
max 2656
Średnia: 257.8 GB/s
Baran
Pamięć RAM w kartach graficznych (znana również jako pamięć wideo lub VRAM) to specjalny rodzaj pamięci używany przez kartę graficzną do przechowywania danych graficznych. Służy jako tymczasowy bufor dla tekstur, shaderów, geometrii i innych zasobów graficznych potrzebnych do wyświetlania obrazów na ekranie. Większa ilość pamięci RAM pozwala karcie graficznej pracować z większą ilością danych i obsługiwać bardziej złożone sceny graficzne o wysokiej rozdzielczości i szczegółowości. Pokaż w całości
1 GB
max 128
Średnia: 4.6 GB
20 GB
max 128
Średnia: 4.6 GB
Wersje pamięci GDDR
Najnowsze wersje pamięci GDDR zapewniają wysokie prędkości przesyłania danych, co poprawia ogólną wydajność
5
max 6
Średnia: 4.9
6
max 6
Średnia: 4.9
Szerokość magistrali pamięci Memory
Szeroka magistrala pamięci oznacza, że ​​może przesłać więcej informacji w jednym cyklu. Ta właściwość wpływa na wydajność pamięci, a także ogólną wydajność karty graficznej urządzenia. Pokaż w całości
256 bit
max 8192
Średnia: 283.9 bit
320 bit
max 8192
Średnia: 283.9 bit
Informacje ogólne
Rozmiar kryształu
Fizyczne wymiary układu scalonego, na którym znajdują się tranzystory, mikroukłady i inne elementy niezbędne do działania karty graficznej. Im większy rozmiar matrycy, tym więcej miejsca zajmuje GPU na karcie graficznej. Większe rozmiary kości mogą zapewnić więcej zasobów obliczeniowych, takich jak rdzenie CUDA lub rdzenie tensorowe, co może prowadzić do zwiększenia wydajności i możliwości przetwarzania grafiki. Pokaż w całości
332
max 826
Średnia: 356.7
628
max 826
Średnia: 356.7
Pokolenie
Nowa generacja kart graficznych zwykle obejmuje ulepszoną architekturę, wyższą wydajność, bardziej efektywne wykorzystanie energii, ulepszone możliwości graficzne i nowe funkcje. Pokaż w całości
GeForce 500
Quadro
Producent
TSMC
Samsung
Rok wydania
2011
max 2023
Średnia:
2021
max 2023
Średnia:
Zużycie energii (TDP)
Wymagania dotyczące rozpraszania ciepła (TDP) to maksymalna możliwa ilość energii rozpraszanej przez system chłodzenia. Im niższy TDP, tym mniej energii zostanie zużyta Pokaż w całości
170 W
Średnia: 160 W
200 W
Średnia: 160 W
Proces technologiczny
Niewielki rozmiar półprzewodników oznacza, że ​​jest to chip nowej generacji.
40 nm
Średnia: 34.7 nm
8 nm
Średnia: 34.7 nm
Liczba tranzystorów
Im wyższa ich liczba, tym większa moc procesora to wskazuje.
1950 million
max 80000
Średnia: 7150 million
28300 million
max 80000
Średnia: 7150 million
Interfejs połączenia PCIe
Zapewniona jest znaczna prędkość karty rozszerzeń używanej do łączenia komputera z urządzeniami peryferyjnymi. Zaktualizowane wersje oferują imponującą przepustowość i wysoką wydajność. Pokaż w całości
2
max 4
Średnia: 3
4
max 4
Średnia: 3
Zamiar
Desktop
Workstation
Funkcje
Wersja OpenGL
OpenGL zapewnia dostęp do możliwości sprzętowych karty graficznej do wyświetlania obiektów graficznych 2D i 3D. Nowe wersje OpenGL mogą obejmować obsługę nowych efektów graficznych, optymalizację wydajności, poprawki błędów i inne ulepszenia. Pokaż w całości
4.6
max 4.6
Średnia:
4.6
max 4.6
Średnia:
DirectX
Używany w wymagających grach, zapewniający ulepszoną grafikę
12
max 12.2
Średnia: 11.4
12.2
max 12.2
Średnia: 11.4
Wersja modelu shadera
Im wyższa wersja modelu shaderów w karcie graficznej, tym więcej funkcji i możliwości programowania efektów graficznych.
5.1
max 6.7
Średnia: 5.9
6.6
max 6.7
Średnia: 5.9
Wersja CUDA
Umożliwia wykorzystanie rdzeni obliczeniowych karty graficznej do wykonywania obliczeń równoległych, co może być przydatne w takich obszarach, jak badania naukowe, głębokie uczenie się, przetwarzanie obrazów i inne zadania wymagające dużej mocy obliczeniowej. Pokaż w całości
2.1
max 9
Średnia:
8.6
max 9
Średnia:
Testy porównawcze
Wynik Passmark
Passmark Video Card Test to program do pomiaru i porównywania wydajności systemu graficznego. Przeprowadza różne testy i obliczenia w celu oceny szybkości i wydajności karty graficznej w różnych obszarach. Pokaż w całości
3098
max 30117
Średnia: 7628.6
20388
max 30117
Średnia: 7628.6
Wynik testu grafiki 3DMark Fire Strike
Mierzy i porównuje zdolność karty graficznej do obsługi grafiki 3D o wysokiej rozdzielczości z różnymi efektami graficznymi. Test Fire Strike Graphics obejmuje złożone sceny, oświetlenie, cienie, cząsteczki, odbicia i inne efekty graficzne w celu oceny wydajności karty graficznej w grach i innych wymagających scenariuszach graficznych. Pokaż w całości
4095
max 51062
Średnia: 11859.1
max 51062
Średnia: 11859.1
Wynik testu Octane Render OctaneBench
Specjalny test służący do oceny wydajności kart graficznych w renderowaniu przy użyciu silnika Octane Render.
38
max 128
Średnia: 47.1
max 128
Średnia: 47.1
Porty
Liczba złączy 6-pinowych
2
max 2
Średnia: 1.2
max 2
Średnia: 1.2
Имеет hdmi выход
Наличие выхода HDMI позволяет подключать устройства с портами HDMI или мини-HDMI. Они могут передавать видео и аудио на дисплей. Pokaż w całości
Tak
Brak danych
Wyjścia DVI
Umożliwia połączenie z wyświetlaczem za pomocą DVI
2
max 3
Średnia: 1.4
max 3
Średnia: 1.4
HDMI
Cyfrowy interfejs używany do przesyłania sygnałów audio i wideo o wysokiej rozdzielczości.
Tak
Brak danych

FAQ

Jak procesor NVIDIA GeForce GTX 560 Ti OEM radzi sobie w testach porównawczych?

Passmark NVIDIA GeForce GTX 560 Ti OEM zdobył 3098 punktów. Druga karta wideo uzyskała 20388 punktów w teście Passmark.

Jakie FLOPY mają karty graficzne?

FLOPS NVIDIA GeForce GTX 560 Ti OEM to 1.3 TFLOPS. Ale druga karta wideo ma liczbę FLOPS równych 24.26 TFLOPS.

Jak szybcy są NVIDIA GeForce GTX 560 Ti OEM i NVIDIA RTX A4500?

NVIDIA GeForce GTX 560 Ti OEM pracuje z częstotliwością 820 MHz. W tym przypadku maksymalna częstotliwość osiąga Brak danych MHz. Bazowa częstotliwość zegara NVIDIA RTX A4500 osiąga 1050 MHz. W trybie turbo osiąga 1650 MHz.

Jaki rodzaj pamięci mają karty graficzne?

NVIDIA GeForce GTX 560 Ti OEM obsługuje GDDR5. Zainstalowano 1 GB pamięci RAM. Przepustowość sięga 128.3 GB/s. NVIDIA RTX A4500 współpracuje z GDDR6. Drugi ma zainstalowane 20 GB pamięci RAM. Jego przepustowość wynosi 128.3 GB/s.

Ile mają złączy HDMI?

NVIDIA GeForce GTX 560 Ti OEM ma Brak danych wyjścia HDMI. NVIDIA RTX A4500 jest wyposażony w Brak danych wyjścia HDMI.

Jakie złącza zasilania są używane?

NVIDIA GeForce GTX 560 Ti OEM używa Brak danych. NVIDIA RTX A4500 jest wyposażony w Brak danych wyjścia HDMI.

Na jakiej architekturze oparte są karty graficzne?

NVIDIA GeForce GTX 560 Ti OEM opiera się na Fermi 2.0. NVIDIA RTX A4500 używa architektury Ampere.

Jaki procesor graficzny jest używany?

NVIDIA GeForce GTX 560 Ti OEM jest wyposażony w GF114. NVIDIA RTX A4500 jest ustawiony na GA102.

Ile linii PCIe

Pierwsza karta graficzna ma 16 linie PCIe. A wersja PCIe to 2. NVIDIA RTX A4500 16 tory PCIe. Wersja PCIe 2.

Ile tranzystorów?

NVIDIA GeForce GTX 560 Ti OEM ma 1950 milionów tranzystorów. NVIDIA RTX A4500 ma 28300 milionów tranzystorów