NVIDIA GeForce GTX 1050 NVIDIA GeForce GTX 1050
EVGA GeForce GTX 1060 EVGA GeForce GTX 1060
VS

比較 NVIDIA GeForce GTX 1050 vs EVGA GeForce GTX 1060

NVIDIA GeForce GTX 1050

NVIDIA GeForce GTX 1050

評価: 16 ポイント
EVGA GeForce GTX 1060

WINNER
EVGA GeForce GTX 1060

評価: 34 ポイント
学年
NVIDIA GeForce GTX 1050
EVGA GeForce GTX 1060
パフォーマンス
6
7
メモリー
3
4
一般情報
7
7
関数
9
7
ベンチマークテスト
2
3
ポート
7
4

最高の仕様と機能

パスマークスコア

NVIDIA GeForce GTX 1050: 4929 EVGA GeForce GTX 1060: 10057

3DMark Cloud Gate GPU ベンチマーク スコア

NVIDIA GeForce GTX 1050: 38901 EVGA GeForce GTX 1060: 75022

3DMark Fire Strike スコア

NVIDIA GeForce GTX 1050: 5820 EVGA GeForce GTX 1060: 10829

3DMark Fire Strike Graphics テストのスコア

NVIDIA GeForce GTX 1050: 6461 EVGA GeForce GTX 1060: 12573

3DMark 11 パフォーマンス GPU ベンチマーク スコア

NVIDIA GeForce GTX 1050: 8148 EVGA GeForce GTX 1060: 16959

説明

NVIDIA GeForce GTX 1050 ビデオ カードは Pascal アーキテクチャに基づいています。 Pascal アーキテクチャ上の EVGA GeForce GTX 1060。最初のものは 3300 百万個のトランジスタを持っています。 2 番目は 4400 百万です。NVIDIA GeForce GTX 1050 のトランジスタ サイズは 14 nm に対して 16 です。

最初のビデオ カードのベース クロック速度は 1354 MHz であるのに対し、2 番目のビデオ カードは 1506 MHz です。

記憶に移りましょう。 NVIDIA GeForce GTX 1050 には 2 GB があります。 EVGA GeForce GTX 1060 には 2 GB がインストールされています。最初のビデオ カードの帯域幅は 112.1 Gb/s であるのに対し、2 番目のビデオ カードは 192.2 Gb/s です。

NVIDIA GeForce GTX 1050 の FLOPS は 1.81 です。 EVGA GeForce GTX 1060 3.74にて。

ベンチマークのテストに進みます。 Passmark ベンチマークで、NVIDIA GeForce GTX 1050 は 4929 ポイントを獲得しました。そしてこちらが2枚目のカード 10057 ポイント。 3DMark では、最初のモデルが 6461 ポイントを獲得しました。 2 番目の 12573 ポイント。

インターフェースに関して。最初のビデオ カードは PCIe 3.0 x16 を使用して接続されています。 2 番目は PCIe 3.0 x16 です。ビデオ カード NVIDIA GeForce GTX 1050 には Directx バージョン 12

EVGA GeForce GTX 1060がNVIDIA GeForce GTX 1050より優れている理由

  • 3DMark Ice Storm GPU ベンチマーク スコア 332408 против 230705 , より少ない 44%

NVIDIA GeForce GTX 1050とEVGA GeForce GTX 1060の比較:ハイライト

NVIDIA GeForce GTX 1050
NVIDIA GeForce GTX 1050
EVGA GeForce GTX 1060
EVGA GeForce GTX 1060
パフォーマンス
GPUベースクロック速度
グラフィックスプロセッシングユニット(GPU)のクロック速度は高速です。
1354 MHz
max 2457
平均: 1124.9 MHz
1506 MHz
max 2457
平均: 1124.9 MHz
GPUメモリ速度
これは、メモリ帯域幅を計算するための重要な側面です。
1752 MHz
max 16000
平均: 1468 MHz
2002 MHz
max 16000
平均: 1468 MHz
FLOPS
プロセッサの処理能力の測定はFLOPSと呼ばれます。
1.81 TFLOPS
max 1142.32
平均: 53 TFLOPS
3.74 TFLOPS
max 1142.32
平均: 53 TFLOPS
RAM
グラフィックス カードの RAM (ビデオ メモリまたは VRAM とも呼ばれます) は、グラフィックス データを保存するためにグラフィックス カードによって使用される特別なタイプのメモリです。これは、画面上に画像を表示するために必要なテクスチャ、シェーダ、ジオメトリ、およびその他のグラフィック リソースの一時バッファとして機能します。 RAM が増えると、グラフィックス カードがより多くのデータを処理できるようになり、より複雑なグラフィック シーンを高解像度で詳細に処理できるようになります。 完全に表示
2 GB
max 128
平均: 4.6 GB
6 GB
max 128
平均: 4.6 GB
PCIeレーンの数
ビデオ カードの PCIe レーンの数によって、PCIe インターフェイスを介したビデオ カードと他のコンピューター コンポーネント間のデータ転送の速度と帯域幅が決まります。ビデオ カードの PCIe レーンが多いほど、帯域幅が増加し、他のコンピュータ コンポーネントと通信する能力も高まります。 完全に表示
16
max 16
平均:
16
max 16
平均:
L1キャッシュサイズ
ビデオ カードの L1 キャッシュの量は通常少なく、キロバイト (KB) またはメガバイト (MB) 単位で測定されます。最もアクティブで頻繁に使用されるデータと命令を一時的に保存するように設計されており、グラフィックス カードがそれらに高速にアクセスできるようになり、グラフィックス操作の遅延が軽減されます。 完全に表示
48
48
ピクセルレンダリング速度
ピクセルのレンダリング速度が高いほど、グラフィックスの表示や画面上のオブジェクトの動きがよりスムーズかつリアルになります。 完全に表示
47 GTexel/s    
max 563
平均: 94.3 GTexel/s    
72.3 GTexel/s    
max 563
平均: 94.3 GTexel/s    
TMU
3D グラフィックスのオブジェクトのテクスチャリングを担当します。 TMU はオブジェクトの表面にテクスチャを提供し、オブジェクトにリアルな外観と詳細を与えます。ビデオ カード内の TMU の数によって、テクスチャを処理する能力が決まります。 TMU が多いほど、より多くのテクスチャを同時に処理できるため、オブジェクトのテクスチャリングが向上し、グラフィックスのリアリズムが向上します。 完全に表示
40
max 880
平均: 140.1
max 880
平均: 140.1
ROP
ピクセルの最終処理と画面上での表示を担当します。 ROP は、色のブレンド、透明度の適用、フレームバッファへの書き込みなど、ピクセルに対してさまざまな操作を実行します。ビデオ カード内の ROP の数は、グラフィックスの処理および表示能力に影響します。 ROP が多いほど、より多くのピクセルと画像フラグメントを同時に処理して画面に表示できます。一般に、ROP の数が多いほど、グラフィックス レンダリングがより高速かつ効率的になり、ゲームやグラフィックス アプリケーションのパフォーマンスが向上します。 完全に表示
32
max 256
平均: 56.8
48
max 256
平均: 56.8
シェーダブロックの数
ビデオ カードのシェーダ ユニットの数は、GPU で計算操作を実行する並列プロセッサの数を指します。ビデオ カード内のシェーダ ユニットが増えるほど、グラフィック タスクの処理に使用できるコンピューティング リソースが増えます。 完全に表示
640
max 17408
平均:
1280
max 17408
平均:
L2キャッシュサイズ
グラフィックス計算を実行するときにグラフィックス カードが使用するデータと命令を一時的に保存するために使用されます。 L2 キャッシュが大きいと、グラフィックス カードがより多くのデータと命令を保存できるようになり、グラフィックス操作の処理速度が向上します。 完全に表示
1024
データが存在しません
ターボGPU
GPU速度が制限を下回った場合、パフォーマンスを向上させるために、高いクロック速度にすることができます。
1455 MHz
max 2903
平均: 1514 MHz
1708 MHz
max 2903
平均: 1514 MHz
テクスチャサイズ
一秒ごとに一定数のテクスチャピクセルが画面に表示されます。
72.86 GTexels/s
max 756.8
平均: 145.4 GTexels/s
120.5 GTexels/s
max 756.8
平均: 145.4 GTexels/s
アーキテクチャ名
Pascal
Pascal
GPU名
GP107
GP106
メモリー
メモリ帯域幅
これは、デバイスが情報を保存または読み取る速度です。
112.1 GB/s
max 2656
平均: 257.8 GB/s
192.2 GB/s
max 2656
平均: 257.8 GB/s
実効メモリ速度
実効メモリクロックは、メモリ情報のサイズと転送速度から計算されます。アプリケーションでのデバイスのパフォーマンスは、クロック周波数に依存します。高いほど良いです。 完全に表示
7008 MHz
max 19500
平均: 6984.5 MHz
8008 MHz
max 19500
平均: 6984.5 MHz
RAM
グラフィックス カードの RAM (ビデオ メモリまたは VRAM とも呼ばれます) は、グラフィックス データを保存するためにグラフィックス カードによって使用される特別なタイプのメモリです。これは、画面上に画像を表示するために必要なテクスチャ、シェーダ、ジオメトリ、およびその他のグラフィック リソースの一時バッファとして機能します。 RAM が増えると、グラフィックス カードがより多くのデータを処理できるようになり、より複雑なグラフィック シーンを高解像度で詳細に処理できるようになります。 完全に表示
2 GB
max 128
平均: 4.6 GB
6 GB
max 128
平均: 4.6 GB
GDDRメモリバージョン
最新バージョンのGDDRメモリは、全体的なパフォーマンスを向上させるために高いデータ転送速度を提供します
5
max 6
平均: 4.9
5
max 6
平均: 4.9
メモリバス幅
ワイドメモリバスは、1サイクルでより多くの情報を転送できることを意味します。このプロパティは、メモリパフォーマンスだけでなく、デバイスのグラフィックカードの全体的なパフォーマンスにも影響します。 完全に表示
128 bit
max 8192
平均: 283.9 bit
192 bit
max 8192
平均: 283.9 bit
一般情報
結晶サイズ
ビデオカードの動作に必要なトランジスタ、超小型回路、その他のコンポーネントが配置されているチップの物理的寸法。ダイ サイズが大きくなるほど、GPU がグラフィックス カード上で占有するスペースも大きくなります。ダイ サイズが大きくなると、CUDA コアやテンソル コアなどのより多くのコンピューティング リソースが提供され、パフォーマンスとグラフィックス処理能力の向上につながる可能性があります。 完全に表示
132
max 826
平均: 356.7
200
max 826
平均: 356.7
長さ
143
max 524
平均: 250.2
max 524
平均: 250.2
世代
新世代のグラフィックス カードには、通常、改良されたアーキテクチャ、より高いパフォーマンス、より効率的な電力使用、改良されたグラフィックス機能、および新機能が含まれています。 完全に表示
GeForce 10
GeForce 10
メーカー
Samsung
TSMC
電源供給電力
ビデオ カードの電源を選択するときは、ビデオ カードの製造元および他のコンピュータ コンポーネントの電源要件を考慮する必要があります。 完全に表示
250
max 1300
平均:
max 1300
平均:
発行年
2016
max 2023
平均:
max 2023
平均:
消費電力(TDP)
熱放散要件(TDP)は、冷却システムによって放散されるエネルギーの最大可能量です。TDPが低いほど、消費される電力は少なくなります 完全に表示
75 W
平均: 160 W
120 W
平均: 160 W
技術的プロセス
半導体のサイズが小さいということは、これが新世代のチップであることを意味します。
14 nm
平均: 34.7 nm
16 nm
平均: 34.7 nm
トランジスタ数
それらの数が多いほど、これはより多くのプロセッサー能力を示します。
3300 million
max 80000
平均: 7150 million
4400 million
max 80000
平均: 7150 million
PCIe接続インターフェース
コンピュータを周辺機器に接続するために使用される拡張カードのかなりの速度が提供されます。更新されたバージョンは、印象的な帯域幅と高性能を提供します。 完全に表示
3
max 4
平均: 3
3
max 4
平均: 3
112 mm
max 421.7
平均: 192.1 mm
172.7 mm
max 421.7
平均: 192.1 mm
目的
Desktop
Desktop
発売当時の価格
109 $
max 419999
平均: 5679.5 $
$
max 419999
平均: 5679.5 $
関数
OpenGLのバージョン
OpenGL は、2D および 3D グラフィックス オブジェクトを表示するためのグラフィックス カードのハードウェア機能へのアクセスを提供します。 OpenGL の新しいバージョンには、新しいグラフィック効果のサポート、パフォーマンスの最適化、バグ修正、その他の改善が含まれる場合があります。 完全に表示
4.6
max 4.6
平均:
4.5
max 4.6
平均:
DirectX
要求の厳しいゲームで使用され、改善されたグラフィックを提供します
12.1
max 12.2
平均: 11.4
12
max 12.2
平均: 11.4
シェーダーモデルのバージョン
ビデオ カードのシェーダ モデルのバージョンが高くなるほど、グラフィック エフェクトのプログラミングに使用できる機能と可能性が増えます。 完全に表示
6.4
max 6.7
平均: 5.9
6.4
max 6.7
平均: 5.9
バルカンバージョン
Vulkan の上位バージョンとは、通常、ソフトウェア開発者がより優れた、より現実的なグラフィック アプリケーションやゲームを作成するために使用できる、より大きな機能、最適化、機能強化のセットを意味します。 完全に表示
1.3
max 1.3
平均:
1.3
max 1.3
平均:
CUDAのバージョン
グラフィックス カードのコンピューティング コアを使用して並列コンピューティングを実行できます。これは、科学研究、ディープ ラーニング、画像処理、その他の計算量の多いタスクなどの分野で役立ちます。 完全に表示
6.1
max 9
平均:
6.1
max 9
平均:
ベンチマークテスト
パスマークスコア
Passmark Video Card Test は、グラフィックス システムのパフォーマンスを測定および比較するためのプログラムです。さまざまなテストと計算を実行して、さまざまな領域でグラフィックス カードの速度とパフォーマンスを評価します。 完全に表示
4929
max 30117
平均: 7628.6
10057
max 30117
平均: 7628.6
3DMark Cloud Gate GPU ベンチマーク スコア
38901
max 196940
平均: 80042.3
75022
max 196940
平均: 80042.3
3DMark Fire Strike スコア
5820
max 39424
平均: 12463
10829
max 39424
平均: 12463
3DMark Fire Strike Graphics テストのスコア
さまざまなグラフィック効果を備えた高解像度 3D グラフィックスを処理するグラフィックス カードの能力を測定および比較します。 Fire Strike グラフィックス テストには、ゲームやその他の要求の厳しいグラフィックス シナリオにおけるグラフィックス カードのパフォーマンスを評価するための、複雑なシーン、照明、影、パーティクル、反射、その他のグラフィック効果が含まれます。 完全に表示
6461
max 51062
平均: 11859.1
12573
max 51062
平均: 11859.1
3DMark 11 パフォーマンス GPU ベンチマーク スコア
8148
max 59675
平均: 18799.9
16959
max 59675
平均: 18799.9
3DMark Vantage パフォーマンス テスト スコア
30860
max 97329
平均: 37830.6
42886
max 97329
平均: 37830.6
3DMark Ice Storm GPU ベンチマーク スコア
332408
max 539757
平均: 372425.7
230705
max 539757
平均: 372425.7
Unigine Heaven 3.0 テストスコア
83
max 61874
平均: 2402
8918
max 61874
平均: 2402
ポート
HDMI出力あり
HDMI出力を使用すると、HDMIまたはミニHDMIポートを備えたデバイスを接続できます。彼らはビデオとオーディオをディスプレイに送ることができます。 完全に表示
はい
はい
HDMIバージョン
最新バージョンでは、オーディオチャネル数、1秒あたりのフレーム数などが増加しているため、広い信号伝送チャネルが提供されます。 完全に表示
2
max 2.1
平均: 1.9
max 2.1
平均: 1.9
DisplayPort
DisplayPortを使用してディスプレイに接続できます
1
max 4
平均: 2.2
3
max 4
平均: 2.2
DVI出力
DVIを使用してディスプレイに接続できます
1
max 3
平均: 1.4
1
max 3
平均: 1.4
HDMIコネクタの数
数が多いほど、同時に接続できるデバイスの数も多くなります(たとえば、ゲーム/ TVセットトップボックス)
1
max 3
平均: 1.1
1
max 3
平均: 1.1
インターフェース
PCIe 3.0 x16
PCIe 3.0 x16
HDMI
高解像度のオーディオ信号とビデオ信号を送信するために使用されるデジタル インターフェイス。
はい
はい

FAQ

NVIDIA GeForce GTX 1050 プロセッサはベンチマークでどのように機能しますか?

Passmark NVIDIA GeForce GTX 1050 は 4929 ポイントを獲得しました。 2 番目のビデオ カードはパスマークで 10057 ポイントを獲得しました。

ビデオ カードの FLOPS は?

FLOPS NVIDIA GeForce GTX 1050 は 1.81 TFLOPS です。 しかし、2 番目のビデオ カードの FLOPS は 3.74 TFLOPS です。

消費電力は?

NVIDIA GeForce GTX 1050 75 ワット。 EVGA GeForce GTX 1060 120 ワット。

NVIDIA GeForce GTX 1050 と EVGA GeForce GTX 1060 はどれくらい速いですか?

NVIDIA GeForce GTX 1050 は 1354 MHz で動作します。 この場合、最大周波数は 1455 MHz に達します。 EVGA GeForce GTX 1060 のクロック ベース周波数が 1506 MHz に達しました。 ターボ モードでは、1708 MHz に達します。

グラフィック カードにはどのような種類のメモリが搭載されていますか?

NVIDIA GeForce GTX 1050 は GDDR5 をサポートしています。 2 GB の RAM をインストールしました。 スループットは 112.1 GB/s に達します。 EVGA GeForce GTX 1060 は GDDR5 で動作します。 2 番目のものには、6 GB の RAM がインストールされています。 その帯域幅は 112.1 GB/秒です。

HDMI コネクタはいくつありますか?

NVIDIA GeForce GTX 1050 には 1 HDMI 出力があります。 EVGA GeForce GTX 1060 には 1 HDMI 出力が装備されています。

どの電源コネクタが使用されていますか?

NVIDIA GeForce GTX 1050 は データが存在しません を使用しています。 EVGA GeForce GTX 1060 には データが存在しません HDMI 出力が装備されています。

ビデオ カードはどのアーキテクチャに基づいていますか?

NVIDIA GeForce GTX 1050 は Pascal に基づいて構築されています。 EVGA GeForce GTX 1060 は Pascal アーキテクチャを使用しています。

どのグラフィック プロセッサが使用されていますか?

NVIDIA GeForce GTX 1050にはGP107が装備されています。 EVGA GeForce GTX 1060 は GP106 に設定されています。

PCIe レーンの数

最初のグラフィックス カードには 16 個の PCIe レーンがあります。 また、PCIe のバージョンは 3 です。 EVGA GeForce GTX 1060 16 PCIe レーン。 PCIe バージョン 3。

トランジスタはいくつですか?

NVIDIA GeForce GTX 1050 には 3300 百万個のトランジスタがあります。 EVGA GeForce GTX 1060 には 4400 百万個のトランジスタがあります