Nvidia Titan X Nvidia Titan X
NVIDIA Quadro RTX 6000 NVIDIA Quadro RTX 6000
VS

Vergleich Nvidia Titan X vs NVIDIA Quadro RTX 6000

Nvidia Titan X

Nvidia Titan X

Bewertung: 0 Punkte
NVIDIA Quadro RTX 6000

WINNER
NVIDIA Quadro RTX 6000

Bewertung: 64 Punkte
Grad
Nvidia Titan X
NVIDIA Quadro RTX 6000
Leistung
4
7
Speicher
5
7
Allgemeine Informationen
7
7
Funktionen
7
8
Häfen
4
3

Beste Spezifikationen und Funktionen

GPU-Basistaktgeschwindigkeit

Nvidia Titan X: 1417 MHz NVIDIA Quadro RTX 6000: 1440 MHz

Rom

Nvidia Titan X: 12 GB NVIDIA Quadro RTX 6000: 24 GB

Speicherbandbreite

Nvidia Titan X: 480 GB/s NVIDIA Quadro RTX 6000: 672 GB/s

Effektive Speichergeschwindigkeit

Nvidia Titan X: 10008 MHz NVIDIA Quadro RTX 6000: 12000 MHz

GPU-Speichergeschwindigkeit

Nvidia Titan X: 1251 MHz NVIDIA Quadro RTX 6000: 1750 MHz

Beschreibung

Die Nvidia Titan X-Grafikkarte basiert auf der Keine Daten verfügbar-Architektur. NVIDIA Quadro RTX 6000 auf der Turing-Architektur. Der erste hat 12000 Millionen Transistoren. Die zweite ist 18600 Millionen. Nvidia Titan X hat eine Transistorgröße von 16 nm gegenüber 12.

Die Basistaktrate der ersten Grafikkarte beträgt 1417 MHz gegenüber 1440 MHz für die zweite.

Lassen Sie uns zur Erinnerung übergehen. Nvidia Titan X hat 12 GB. NVIDIA Quadro RTX 6000 hat 12 GB installiert. Die Bandbreite der ersten Grafikkarte beträgt 480 Gb/s gegenüber 672 Gb/s der zweiten.

FLOPS von Nvidia Titan X sind 9.72. Bei NVIDIA Quadro RTX 6000 16.46.

Geht zu Tests in Benchmarks. Im Passmark-Benchmark hat Nvidia Titan X Keine Daten verfügbar Punkte erzielt. Und hier ist die zweite Karte 19192 Punkte. Im 3DMark erzielte das erste Modell Keine Daten verfügbar Punkte. Zweite Keine Daten verfügbar Punkte.

In Bezug auf Schnittstellen. Die erste Grafikkarte wird mit Keine Daten verfügbar verbunden. Die zweite ist PCIe 3.0 x16. Grafikkarte Nvidia Titan X hat Directx-Version 12. Grafikkarte NVIDIA Quadro RTX 6000 – Directx-Version – 12.2.

Warum NVIDIA Quadro RTX 6000 besser ist als Nvidia Titan X

  • Stromverbrauch (TDP) 250 W против 260 W, weniger durch -4%

Vergleich von Nvidia Titan X und NVIDIA Quadro RTX 6000: grundlegende momente

Nvidia Titan X
Nvidia Titan X
NVIDIA Quadro RTX 6000
NVIDIA Quadro RTX 6000
Leistung
GPU-Basistaktgeschwindigkeit
Die Grafikprozessoreinheit (GPU) hat eine hohe Taktrate.
1417 MHz
max 2457
Durchschnitt: 1124.9 MHz
1440 MHz
max 2457
Durchschnitt: 1124.9 MHz
GPU-Speichergeschwindigkeit
Dies ist ein wichtiger Aspekt für die Berechnung der Speicherbandbreite.
1251 MHz
max 16000
Durchschnitt: 1468 MHz
1750 MHz
max 16000
Durchschnitt: 1468 MHz
FLOPS
Die Messung der Rechenleistung eines Prozessors wird als FLOPS bezeichnet.
9.72 TFLOPS
max 1142.32
Durchschnitt: 53 TFLOPS
16.46 TFLOPS
max 1142.32
Durchschnitt: 53 TFLOPS
Rom
RAM in Grafikkarten (auch Videospeicher oder VRAM genannt) ist ein spezieller Speichertyp, der von einer Grafikkarte zum Speichern von Grafikdaten verwendet wird. Es dient als temporärer Puffer für Texturen, Shader, Geometrie und andere Grafikressourcen, die zum Anzeigen von Bildern auf dem Bildschirm benötigt werden. Durch mehr RAM kann die Grafikkarte mit mehr Daten arbeiten und komplexere Grafikszenen mit hoher Auflösung und Details verarbeiten. Vollständig anzeigen
12 GB
max 128
Durchschnitt: 4.6 GB
24 GB
max 128
Durchschnitt: 4.6 GB
Anzahl der PCIe-Lanes
Die Anzahl der PCIe-Lanes in Grafikkarten bestimmt die Geschwindigkeit und Bandbreite der Datenübertragung zwischen der Grafikkarte und anderen Computerkomponenten über die PCIe-Schnittstelle. Je mehr PCIe-Lanes eine Grafikkarte hat, desto größer ist die Bandbreite und die Fähigkeit, mit anderen Computerkomponenten zu kommunizieren. Vollständig anzeigen
16
max 16
Durchschnitt:
16
max 16
Durchschnitt:
L1-Cache-Größe
Die Größe des L1-Cache in Grafikkarten ist normalerweise gering und wird in Kilobyte (KB) oder Megabyte (MB) gemessen. Es wurde entwickelt, um die aktivsten und am häufigsten verwendeten Daten und Anweisungen vorübergehend zu speichern, sodass die Grafikkarte schneller darauf zugreifen und Verzögerungen bei Grafikvorgängen reduzieren kann. Vollständig anzeigen
48
Keine Daten verfügbar
Pixel-Rendering-Geschwindigkeit
Je höher die Pixel-Rendering-Geschwindigkeit, desto flüssiger und realistischer wird die Darstellung von Grafiken und die Bewegung von Objekten auf dem Bildschirm. Vollständig anzeigen
136 GTexel/s    
max 563
Durchschnitt: 94.3 GTexel/s    
170 GTexel/s    
max 563
Durchschnitt: 94.3 GTexel/s    
TMUs
Verantwortlich für die Texturierung von Objekten in 3D-Grafiken. TMU verleiht den Oberflächen von Objekten Texturen, die ihnen ein realistisches Aussehen und Details verleihen. Die Anzahl der TMUs in einer Grafikkarte bestimmt ihre Fähigkeit, Texturen zu verarbeiten. Je mehr TMUs vorhanden sind, desto mehr Texturen können gleichzeitig verarbeitet werden, was zu einer besseren Texturierung von Objekten beiträgt und den Realismus von Grafiken erhöht. Vollständig anzeigen
192
max 880
Durchschnitt: 140.1
288
max 880
Durchschnitt: 140.1
ROPs
Verantwortlich für die endgültige Verarbeitung der Pixel und deren Anzeige auf dem Bildschirm. ROPs führen verschiedene Vorgänge an Pixeln durch, z. B. das Mischen von Farben, das Anwenden von Transparenz und das Schreiben in den Framebuffer. Die Anzahl der ROPs in einer Grafikkarte beeinflusst ihre Fähigkeit, Grafiken zu verarbeiten und anzuzeigen. Je mehr ROPs, desto mehr Pixel und Bildfragmente können gleichzeitig verarbeitet und auf dem Bildschirm angezeigt werden. Eine höhere Anzahl von ROPs führt im Allgemeinen zu einer schnelleren und effizienteren Grafikwiedergabe und einer besseren Leistung in Spielen und Grafikanwendungen. Vollständig anzeigen
96
max 256
Durchschnitt: 56.8
96
max 256
Durchschnitt: 56.8
Anzahl der Shader-Blöcke
Die Anzahl der Shader-Einheiten in Grafikkarten bezieht sich auf die Anzahl paralleler Prozessoren, die Rechenoperationen in der GPU ausführen. Je mehr Shader-Einheiten in der Grafikkarte vorhanden sind, desto mehr Rechenressourcen stehen für die Verarbeitung von Grafikaufgaben zur Verfügung. Vollständig anzeigen
3584
max 17408
Durchschnitt:
4608
max 17408
Durchschnitt:
L2-Cache-Größe
Wird zum vorübergehenden Speichern von Daten und Anweisungen verwendet, die von der Grafikkarte bei der Durchführung von Grafikberechnungen verwendet werden. Ein größerer L2-Cache ermöglicht es der Grafikkarte, mehr Daten und Anweisungen zu speichern, was dazu beiträgt, die Verarbeitung von Grafikvorgängen zu beschleunigen. Vollständig anzeigen
3000
6000
Turbo-GPU
Wenn die GPU-Geschwindigkeit unter ihr Limit gefallen ist, kann zur Verbesserung der Leistung eine hohe Taktrate erreicht werden.
1531 MHz
max 2903
Durchschnitt: 1514 MHz
1770 MHz
max 2903
Durchschnitt: 1514 MHz
Texturgröße
Jede Sekunde wird eine bestimmte Anzahl von strukturierten Pixeln auf dem Bildschirm angezeigt.
317 GTexels/s
max 756.8
Durchschnitt: 145.4 GTexels/s
427.7 GTexels/s
max 756.8
Durchschnitt: 145.4 GTexels/s
Speicher
Speicherbandbreite
Dies ist die Geschwindigkeit, mit der das Gerät Informationen speichert oder liest.
480 GB/s
max 2656
Durchschnitt: 257.8 GB/s
672 GB/s
max 2656
Durchschnitt: 257.8 GB/s
Effektive Speichergeschwindigkeit
Der effektive Speichertakt wird aus der Größe und Übertragungsrate der Speicherinformationen berechnet. Die Leistung des Geräts in Anwendungen hängt von der Taktfrequenz ab. Je höher, desto besser. Vollständig anzeigen
10008 MHz
max 19500
Durchschnitt: 6984.5 MHz
12000 MHz
max 19500
Durchschnitt: 6984.5 MHz
Rom
RAM in Grafikkarten (auch Videospeicher oder VRAM genannt) ist ein spezieller Speichertyp, der von einer Grafikkarte zum Speichern von Grafikdaten verwendet wird. Es dient als temporärer Puffer für Texturen, Shader, Geometrie und andere Grafikressourcen, die zum Anzeigen von Bildern auf dem Bildschirm benötigt werden. Durch mehr RAM kann die Grafikkarte mit mehr Daten arbeiten und komplexere Grafikszenen mit hoher Auflösung und Details verarbeiten. Vollständig anzeigen
12 GB
max 128
Durchschnitt: 4.6 GB
24 GB
max 128
Durchschnitt: 4.6 GB
DDR-Speicherversionen
Die neuesten Versionen des GDDR-Speichers bieten hohe Datenübertragungsraten, um die Gesamtleistung zu verbessern
5
max 6
Durchschnitt: 4.9
6
max 6
Durchschnitt: 4.9
Speicherbusbreite
Ein breiter Speicherbus bedeutet, dass er mehr Informationen in einem Zyklus übertragen kann. Diese Eigenschaft beeinflusst die Speicherleistung sowie die Gesamtleistung der Grafikkarte des Geräts. Vollständig anzeigen
384 bit
max 8192
Durchschnitt: 283.9 bit
384 bit
max 8192
Durchschnitt: 283.9 bit
Allgemeine Informationen
Generation
Eine neue Generation von Grafikkarten umfasst in der Regel eine verbesserte Architektur, höhere Leistung, eine effizientere Energienutzung, verbesserte Grafikfunktionen und neue Funktionen. Vollständig anzeigen
GeForce 900
Quadro
Hersteller
TSMC
TSMC
Stromverbrauch (TDP)
Die Anforderungen an die Wärmeableitung (TDP) sind die maximal mögliche Energiemenge, die vom Kühlsystem abgeführt wird. Je niedriger die TDP, desto weniger Strom wird verbraucht Vollständig anzeigen
250 W
Durchschnitt: 160 W
260 W
Durchschnitt: 160 W
Technologischer Prozess
Aufgrund der geringen Größe der Halbleiter handelt es sich um einen Chip der neuen Generation.
16 nm
Durchschnitt: 34.7 nm
12 nm
Durchschnitt: 34.7 nm
Anzahl Transistoren
Je höher ihre Zahl, desto mehr Prozessorleistung zeigt dies an.
12000 million
max 80000
Durchschnitt: 7150 million
18600 million
max 80000
Durchschnitt: 7150 million
PCIe-Verbindungsschnittstelle
Eine beträchtliche Geschwindigkeit der Erweiterungskarte, die verwendet wird, um den Computer mit den Peripheriegeräten zu verbinden, wird bereitgestellt. Die aktualisierten Versionen bieten beeindruckende Bandbreite und hohe Leistung. Vollständig anzeigen
3
max 4
Durchschnitt: 3
3
max 4
Durchschnitt: 3
Breite
267 mm
max 421.7
Durchschnitt: 192.1 mm
111 mm
max 421.7
Durchschnitt: 192.1 mm
Höhe
111.1 mm
max 620
Durchschnitt: 89.6 mm
mm
max 620
Durchschnitt: 89.6 mm
Zweck
Desktop
Workstation
Funktionen
OpenGL-Version
OpenGL bietet Zugriff auf die Hardwarefunktionen der Grafikkarte zur Anzeige von 2D- und 3D-Grafikobjekten. Neue Versionen von OpenGL umfassen möglicherweise Unterstützung für neue grafische Effekte, Leistungsoptimierungen, Fehlerbehebungen und andere Verbesserungen. Vollständig anzeigen
4.5
max 4.6
Durchschnitt:
4.6
max 4.6
Durchschnitt:
DirectX
Wird in anspruchsvollen Spielen verwendet und bietet verbesserte Grafik
12
max 12.2
Durchschnitt: 11.4
12.2
max 12.2
Durchschnitt: 11.4
Shader-Modellversion
Je höher die Version des Shader-Modells in der Grafikkarte ist, desto mehr Funktionen und Möglichkeiten stehen für die Programmierung grafischer Effekte zur Verfügung. Vollständig anzeigen
6.4
max 6.7
Durchschnitt: 5.9
6.6
max 6.7
Durchschnitt: 5.9
Vulkan-Version
Eine höhere Version von Vulkan bedeutet normalerweise einen größeren Satz an Funktionen, Optimierungen und Verbesserungen, die Softwareentwickler nutzen können, um bessere und realistischere grafische Anwendungen und Spiele zu erstellen. Vollständig anzeigen
1.3
max 1.3
Durchschnitt:
max 1.3
Durchschnitt:
CUDA-Version
Ermöglicht Ihnen die Nutzung der Rechenkerne Ihrer Grafikkarte für paralleles Rechnen, was in Bereichen wie wissenschaftlicher Forschung, Deep Learning, Bildverarbeitung und anderen rechenintensiven Aufgaben nützlich sein kann. Vollständig anzeigen
6.1
max 9
Durchschnitt:
7.5
max 9
Durchschnitt:
Häfen
Hat HDMI-Ausgang
Über den HDMI-Ausgang können Sie Geräte mit HDMI- oder Mini-HDMI-Anschlüssen anschließen. Sie können Video und Audio an das Display senden.
Ja
Keine Daten verfügbar
HDMI-Version
Die neueste Version bietet aufgrund der erhöhten Anzahl von Audiokanälen, Bildern pro Sekunde usw. einen breiten Signalübertragungskanal.
2
max 2.1
Durchschnitt: 1.9
max 2.1
Durchschnitt: 1.9
DisplayPort
Ermöglicht die Verbindung mit einem Display über DisplayPort
3
max 4
Durchschnitt: 2.2
4
max 4
Durchschnitt: 2.2
DVI-Ausgänge
Ermöglicht die Verbindung mit einem Display über DVI
1
max 3
Durchschnitt: 1.4
max 3
Durchschnitt: 1.4
Anzahl HDMI-Anschlüsse
Je höher ihre Anzahl, desto mehr Geräte können gleichzeitig angeschlossen werden (z. B. Spiele- / TV-Set-Top-Boxen)
1
max 3
Durchschnitt: 1.1
max 3
Durchschnitt: 1.1
HDMI
Eine digitale Schnittstelle, die zur Übertragung hochauflösender Audio- und Videosignale dient.
Ja
Keine Daten verfügbar

FAQ

Wie schneidet der Nvidia Titan X-Prozessor in Benchmarks ab?

Passmark Nvidia Titan X hat Keine Daten verfügbar Punkte erzielt. Die zweite Grafikkarte erzielte in Passmark 19192 Punkte.

Welche FLOPS haben Grafikkarten?

FLOPS Nvidia Titan X sind 9.72 TFLOPS. Aber die zweite Grafikkarte hat FLOPS gleich 16.46 TFLOPS.

Welcher Stromverbrauch?

Nvidia Titan X 250 Watt. NVIDIA Quadro RTX 6000 260 Watt.

Wie schnell sind Nvidia Titan X und NVIDIA Quadro RTX 6000?

Nvidia Titan X arbeitet mit 1417 MHz. In diesem Fall erreicht die maximale Frequenz 1531 MHz. Die Taktbasisfrequenz von NVIDIA Quadro RTX 6000 erreicht 1440 MHz. Im Turbo-Modus erreicht er 1770 MHz.

Welchen Speicher haben Grafikkarten?

Nvidia Titan X unterstützt GDDR5. Installierte 12 GB RAM. Der Durchsatz erreicht 480 GB/s. NVIDIA Quadro RTX 6000 funktioniert mit GDDR6. Der zweite hat 24 GB RAM installiert. Seine Bandbreite beträgt 480 GB/s.

Wie viele HDMI-Anschlüsse haben sie?

Nvidia Titan X hat 1 HDMI-Ausgänge. NVIDIA Quadro RTX 6000 ist mit Keine Daten verfügbar HDMI-Ausgängen ausgestattet.

Welche Stromanschlüsse werden verwendet?

Nvidia Titan X verwendet Keine Daten verfügbar. NVIDIA Quadro RTX 6000 ist mit Keine Daten verfügbar HDMI-Ausgängen ausgestattet.

Auf welcher Architektur basieren Grafikkarten?

Nvidia Titan X basiert auf Keine Daten verfügbar. NVIDIA Quadro RTX 6000 verwendet die Architektur Turing.

Welcher Grafikprozessor wird verwendet?

Nvidia Titan X ist mit Keine Daten verfügbar ausgestattet. NVIDIA Quadro RTX 6000 ist auf TU102 eingestellt.

Wie viele PCIe-Lanes

Die erste Grafikkarte hat 16 PCIe-Lanes. Und die PCIe-Version ist 3. NVIDIA Quadro RTX 6000 16 PCIe-Lanes. PCIe-Version 3.

Wie viele Transistoren?

Nvidia Titan X hat 12000 Millionen Transistoren. NVIDIA Quadro RTX 6000 hat 18600 Millionen Transistoren